院况简介
1949年,伴随着新中国的诞生,中国科学院成立。
作为国家在科学技术方面的最高学术机构和全国自然科学与高新技术的综合研究与发展中心,建院以来,中国科学院时刻牢记使命,与科学共进,与祖国同行,以国家富强、人民幸福为己任,人才辈出,硕果累累,为我国科技进步、经济社会发展和国家安全做出了不可替代的重要贡献。 更多简介 +
院领导集体
创新单元
科技奖励
科技期刊
工作动态/ 更多
中国科学院学部
中国科学院院部
语音播报
双原子催化剂(DACs)作为单原子催化剂(SACs)的延伸和升级,通过将两种不同的金属原子以配对的形式锚定在载体上,利用配对金属原子间的电子相互作用,产生“1+1>2”的协同效应。这种催化剂可以显著优化反应路径、提升催化活性和选择性,已成为多相催化领域前沿的研究热点。然而,常规合成过程中,难以精确控制两种金属前驱体在载体上的吸附、成核与稳定化过程,导致金属原子随机分散,形成彼此孤立的单原子或金属团簇/纳米颗粒的混合物。这种不可控的分散状态严重制约了DACs的本征催化性能探索和构效关系研究。因此,发展一种能够实现原子级精准操控,确保两种金属原子以特定模式配位的合成策略尤为重要。
近日,中国科学院青岛生物能源与过程研究所提出了一种新型的种子介导策略,成功构建了具有明确Ag1-Pd1双原子构型的Ag1-Pd1/CeO2催化剂。
研究团队利用K2PdCl4作为前体,合成了单原子Pd1/CeO2催化剂。随后,借助Pd1/CeO2催化剂Pd1键合的残留Cl物种实现对Ag离子的定向吸附。在后续焙烧过程中,Pd-Cl-Ag之间的相互作用促使Ag1-Pd1双原子构型的形成,有效避免了两种单原子在CeO2表面的随机分散。与单原子Pd1/CeO2相比,Ag1-Pd1/CeO2在3-硝基苯乙烯的催化转移加氢(CTH)反应中表现出更优异的催化活性,且在长时间反应条件下仍能保持对3-乙烯基苯胺的高选择性。
机理研究表明,Ag1-Pd1双原子位点不仅可与邻近的Ce3+-OV位点协同促进硝基芳烃的偶联缩合反应,还能有效驱动缩合中间体向目标芳香胺的选择性转化。此外,研究还发现CeO2负载的SACs和DACs对硝基芳烃CTH反应的活性具有显著的金属负载量依赖性,表明优化金属负载量是提升催化效率的关键。
该研究为原子级精准构建DACs提供了一种新策略,证明了双原子位点的可控构筑在提升硝基芳烃CTH反应性能中的重要作用。
相关研究成果发表在《应用催化B:环境与能源》(Applied Catalysis B: Environment and Energy)上。研究工作得到国家自然科学基金的支持。

Ag1-Pd1/CeO2的合成与结构表征
© 1996 - 中国科学院 版权所有 京ICP备05002857号-1
京公网安备110402500047号 网站标识码bm48000002
地址:北京市西城区三里河路52号 邮编:100864
电话: 86 10 68597114(总机) 86 10 68597289(总值班室)
© 1996 - 中国科学院 版权所有 京ICP备05002857号-1
京公网安备110402500047号 网站标识码bm48000002
地址:北京市西城区三里河路52号 邮编:100864
电话: 86 10 68597114(总机) 86 10 68597289(总值班室)
© 1996 - 中国科学院 版权所有
京ICP备05002857号-1
京公网安备110402500047号
网站标识码bm48000002
地址:北京市西城区三里河路52号 邮编:100864
电话:86 10 68597114(总机)
86 10 68597289(总值班室)








