加快打造原始创新策源地,加快突破关键核心技术,努力抢占科技制高点,为把我国建设成为世界科技强国作出新的更大的贡献。

——习近平总书记在致中国科学院建院70周年贺信中作出的“两加快一努力”重要指示要求

面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,率先实现科学技术跨越发展,率先建成国家创新人才高地,率先建成国家高水平科技智库,率先建设国际一流科研机构。

——中国科学院办院方针

首页 > 科研进展

中国科大等实现超越海森堡极限精度的量子精密测量

2023-05-29 中国科学技术大学
【字体:

语音播报

中国科学技术大学郭光灿院士团队在量子精密测量的研究中取得重要进展。该团队李传锋、陈耕等与香港大学合作,利用量子不确定因果序实现了超越海森堡极限精度的量子精密测量。5月1日,相关研究成果以Experimental super-Heisenberg quantum metrology with indefinite gate order为题,发表在《自然-物理》上。

量子精密测量致力于把量子力学原理运用到各种测量任务中以实现超过经典极限的测量精度。海森堡极限被认为是利用量子方法和资源所能达到的最终极限。国际上曾有一些工作称超越了海森堡极限,但这些工作利用了非线性效应或者包含了含时的哈密顿量,引起了广泛讨论,最终被理论上证明在以能量等作为规范化资源定义的前提下仍会遵循海森堡极限。

近年来,学术界提出了一种新的量子结构即量子不确定因果序。量子力学的叠加原理允许不同量子本征态之间的叠加,并允许两个事件处于两个相反时序的量子叠加上(图1)。这一新型的量子资源已被证实可以在特定的量子计算和量子通信任务中提供优势,而此前工作均是基于离散变量体系,未能直接应用于量子精密测量任务中。

李传锋、陈耕等设计了一种全新的杂化(hybrid)量子装置,即用一个离散量子比特控制光子两组连续变量的演化时序,实验实现了不确定因果序,从而实现了对演化产生的几何相位的超海森堡极限的精密测量,即测量的不确定度δA反比于独立演化过程的次数N的平方(δA∝1/N2)。实验结果表明,这一新方法在实验演示的范围内获得了对确定因果序方法理论上的最高测量精度,即海森堡极限(δA∝1/N,图2中的蓝色虚线)的绝对优势,实验结果逼近了理论上的超海森堡极限(图2中的红色实线)。

该实验使用单个光子作为探针,不存在光子间的相互作用,且单次测量所需要的能量不超过单个光子的能量,从而实现了首个在规范化资源定义下超越海森堡极限的实验工作。实验实现的相对于确定因果序方法的提升可以直接转化为在实际测量任务中的现实优势。

该实验对不确定因果序和量子精密测量的理解均有重要影响。研究工作得到科学技术部、国家自然科学基金委员会、中国科学院、安徽省、中国科大的支持。

论文链接

图1.量子不确定因果序的示意图。蓝色和红色路线经过两个门的时序不同且处于量子叠加态。

图2.实验的测量精度。黑色方点为N个独立演化过程的实验测量精度,红色实线为不确定因果序方法的超海森堡极限(δA=1/N2),蓝色虚线为确定因果序方法的最高精度即海森堡极限(δA=1/N)。

打印 责任编辑:侯茜

扫一扫在手机打开当前页

© 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

地址:北京市西城区三里河路52号 邮编:100864

电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有 京ICP备05002857号-1 京公网安备110402500047号 网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864

    电话: 86 10 68597114(总机) 86 10 68597289(总值班室)

    编辑部邮箱:casweb@cashq.ac.cn

  • © 1996 - 中国科学院 版权所有
    京ICP备05002857号-1
    京公网安备110402500047号
    网站标识码bm48000002

    地址:北京市西城区三里河路52号 邮编:100864
    电话:86 10 68597114(总机)
       86 10 68597289(总值班室)
    编辑部邮箱:casweb@cashq.ac.cn