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Accelerating 3D Fourier migration with graphics processing units
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ABSTRACT

Computational cost is a major factor that inhibits the prac-
tical application of 3D depth migration. We have developed a
fast parallel scheme to speed up 3D wave-equation depth mi-
gration on a parallel computing device, i.e., on graphics pro-
cessing units (GPUs). The third-order optimized general-
ized-screen propagator is used to take advantage of the built-
in software implementation of the fast Fourier transform. The
propagator is coded as a sequence of kernels that can be
called from the computer host for each frequency compo-
nent. Moving the wavefield extrapolation for each depth lev-
el to the GPUs allows handling a large 3D velocity model, but
this scheme can be speeded up to a limited degree over the
CPU implementation because of the low-bandwidth data
transfer between host and device. We have created further
speedup in this extrapolation scheme by minimizing the low-
bandwidth data transfer, which is done by storing the 3D ve-
locity model and imaged data in the device memory, and re-
ducing half the memory demand by compressing the 3D ve-
locity model and imaged data using integer arrays instead of
float arrays. By incorporating a 2D tapered function, time-
shift propagator, and scaling of the inverse Fourier transform
into a compact kernel, the computation time is reduced great-
ly. Three-dimensional impulse responses and synthetic data
examples have demonstrated that the GPU-based Fourier mi-
gration typically is 25 to 40 times faster than the CPU-based
implementation. It enables us to image complex media using
3D depth migration with little concern for computational
cost. The macrovelocity model can be built in a much shorter
turnaround time.

INTRODUCTION

The one-way wave-equation method plays an important role in
the fields of seismic modeling and depth migration (Claerbout,
1985; Wu, 1994; Xie and Wu, 2001). It can handle multipathing

wavefields naturally (Le Rousseau and de Hoop, 2001) and has at-
tractive storage demand with a depth-iterative algorithm (Claerbout,
1985). Unfortunately, 3D prestack depth migration is difficult to use
routinely because of high computational cost. A typical 3D prestack
depth migration might run for several weeks, even with powerful aid
from high-performance computer (PC) clusters. Furthermore, build-
ing the macrovelocity model for depth migration requires many iter-
ations of wavefield extrapolation (Shen and Symes, 2008). There-
fore, computational efficiency of the wavefield propagator is still a
major bottleneck in the practical application of one-way depth mi-
gration.

During the last three decades, various one-way wave-equation
methods based on Fourier transforms have been developed for imag-
ing complex media (Gazdag, 1978; Gazdag and Sguazzero, 1984;
Stoffa et al., 1990; Wu, 1994; Huang et al., 1999a, Huang et al.,
1999b; de Hoop et al., 2000; Huang and Fehler, 2000; Chen and Liu,
2004; Fu, 2005; Liu and Zhang, 2006; Zhang and Liu, 2007). Com-
pared with the finite-difference method (Claerbout, 1985; Hale,
1991), the Fourier method is immune to the two-way splitting error
(Brown, 1983) in 3D cases and has almost no numerical dispersion
for coarse grids and high frequencies. The Fourier method also is rel-
atively effective because of using fast Fourier transforms. The gen-
eralized-screen propagator (de Hoop et al., 2000; Le Rousseau and
de Hoop, 2001) is a general form of the high-order Fourier method,
but it is accurate only for weak velocity contrasts (Zhang et al.,
2009). Liu and Zhang (2006) significantly improve the accuracy of
the generalized-screen propagator by optimizing the constant coeffi-
cients while keeping the algorithm structure.

However, high-order terms are needed to handle wide-angle prop-
agation in the presence of strong lateral velocity variations, which
require many more 2D Fourier transforms to shuttle the wavefield
between the spatial and wavenumber domains. Zhang et al. (2009)
show that the third-order generalized-screen propagator (de Hoop et
al., 2000) is slower than the Fourier finite-difference method (Ris-
tow and Riihl, 1994), although the fastest CPU-based Fourier trans-
form is used. Therefore, the speed of the Fourier transform is the ma-
jor factor that impacts the computational efficiency of 3D Fourier
migration. However, the 3D Fourier migration has great potential to
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be accelerated in the presence of an enhanced fast algorithm of the
Fourier transform.

In recent years, the computing capacities of graphics processing
units (GPUs) have been improved enormously. With multiple cores
driven by high-memory bandwidth, today’s GPUs offer tremendous
computational resources for graphics processing and general-pur-
pose computations. The latest GPUs even can perform more than
500 billion floating-point operations per second, which is more than
one order of magnitude faster than the latest Intel CPUs. The compil-
er and development tools, called compute unified device architec-
ture (CUDA), provide an easily accessible way to generate parallel
code for execution on GPUs. The CUDA-enabled GPU has been
used in many fields of scientific computation (Stantchev et al.,
2008), such as medical imaging (Muyan-Ozcelik et al., 2008) and
molecular mechanics simulations (Stone et al., 2007; Yang et al.,
2007). Recently, the CUDA-enabled GPU also has been used for ex-
plicit finite-difference depth migration (Hale, 1991) and Kirchhoff
time migration (Li et al., 2009).

In this study, we present a GPU-based computing scheme to ac-
celerate the 3D Fourier depth migration. We use the third-order opti-
mized generalized-screen propagator (de Hoop et al., 2000; Liu and
Zhang, 2006) to take advantage of the CUDA library of fast Fourier
transform. For each frequency component, the propagator is coded
as a sequence of CUDA kernels that can be called in terms of func-
tions when the wavefield is downward extrapolated iteratively from
the surface to the bottom of the velocity model. Each kernel is tai-
lored for the specific architecture and parallel implementation on the
GPUs. Numerical experiments show that our GPU-based parallel
code runs 25 to 40 times faster than the traditional CPU-based serial
code.

Our computing scheme is easy to use and implement. It performs
fast Fourier transforms, the major parts of the Fourier depth propa-
gator, by calling the CUDA library, and it involves using only the
global memory of the graphics device, which can be used safely in an
instant manner. This computing scheme provides us with a very sim-
ple way to accelerate depth migration using fashionable GPUs. Iten-
ables us to achieve a relatively high speedup ratio over the equiva-
lent CPU-based algorithm but without expending too much effort in
porting the existing code to the CUDA-enabled GPU.

First we review the generalized-screen propagator. Then we
benchmark the speed of the GPU-based fast Fourier transform and
the memory bandwidth of data transfer. Next we construct a comput-
ing scheme for 3D Fourier migration to cater to the CUDA imple-
mentation on GPUs. Finally, we demonstrate the proposed scheme
using impulse responses and synthetic data of the SEG/EAGE salt
model (Aminzadeh et al., 1996).

METHODOLOGY

Review of the generalized-screen propagator

The downward one-way wave equation for 3D depth migration
reads (Claerbout, 1985)

JIP(x,y,z;0 .
—( y.zw) = ik P(x,y,z;0), (1)
0z
with the square-root operator defined as k.

= Vws? + 92/ 9x* + 9%/ dy?, ‘where the slowness s is the reciprocal
of the velocity v(x,y.z), i = V—1 is the imaginary unit, o is the cir-
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cular frequency, and P(x,y,z;w) is the wavefield in frequency do-
main. The formal solution of equation 1 is

P(x,y,z + Az;w) =exp(ik.Az) P(x,y,z;0), (2)

where Az is the thickness of a thin horizontal slab (i.e., depth inter-
val).

For laterally varying media, a constant reference velocity function
vo(z) can be introduced to handle the homogeneous background for
each depth step (Stoffa et al., 1990; Wu, 1994). Rewriting the opera-
tor k. as k. = ko1 — (053 — ’s?)/k%, and expanding it by Taylor
expansion, we obtain

o 0252 — 22 \"
kz = kzO + kzoz an( . P 5 (3)
n=1 kzO

where kg = Vw?sj + 92/ x>+ 3%/ dy*; so = 1/vy(z) is the reference
slowness, and a,, are constant coefficients with the first four being a,
=—1/2,a,= —1/8,a;= —1/16, and a, = —5/128, respective-
ly. Considering

*© S2 n
As=s—s0=s02an<1——2>, (4)

n=1 So

we obtain k.=~ k., + wAs + kS5, where As = s — s is the perturba-
tion of slowness between the real slowness s and the reference slow-
ness s, and

N w2 1
kfs =w 2 aﬂ(s(z) - SZ)H( -1 2n— 1) (5)
n=1 ko So

is the Nth-order propagator of the generalized-screen method (de
Hoop etal., 2000).

The formal solution of the one-way wave equation, equation 2,
can be decomposed for laterally varying media into three cascaded
equations,

P'(x,y,z + Az;w) = explik,gAz) P(x,y,z;0), (6)

P"(x,y,z + Az;0) = exp(iwAsAZ) P’ (x,y.,z
+Az;w), (7)
and
P(x,y,z + Az;w) = exp(iszsAz)P"(x,y,z + Az;w). (8)

Equation 6 performs the phase shift for the reference slowness s, in
the wavenumber domain (Gazdag, 1978); equation 7 performs the
time-delay correction for slowness perturbations in the spatial do-
main (Stoffa et al., 1990; Wu, 1994); and equation 8 handles the
high-order corrections for large velocity contrasts and wide-angle
propagations (Le Rousseau and de Hoop, 2001).

In the implementation, however, another Taylor expansion (i.e.,
e*=~1 + x) is required on the exponential function in equation 8 to
explicitly separate the spatial and wavenumber variations (Le Rous-
seau and de Hoop, 2001), i.e., the generalized-screen correction

P(x,y,z + Az;w)=(1 + ikZGSAz)P”(x,y,z + Az;w). (9)

De Hoop et al. (2000) propose a normalization operator N to handle
the stability and to reduce the phase error caused by the Taylor ex-
pansion used in equation 9, which reads
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N + p + iq) = explig)

-1
[ <1+ p,),
1 +iq 1 +iq
(10)

where p and ¢ denote the real part and imaginary part of a complex
number, respectively.

Accuracy of the third-order optimum split-step
Fourier propagator

Phase error versus velocity contrast is shown in Figure 1 follow-
ing the work by Zhang et al. (2009). Obviously, the low-order gener-
alized-screen propagator is accurate enough for wide-angle propa-
gation in media with weak velocity contrast; however, a high-order
generalized-screen propagator is needed to handle the wide-angle
propagation in media with moderate and strong velocity contrasts.
Liu and Zhang (2006) significantly improve the accuracy of the gen-
eralized-screen propagator by optimizing the constant coefficients
a, while retaining the algorithm structure. The resultant propagator,
named the optimum split-step Fourier propagator (OSP), enables us
to image much steeper dips in complex media.

The fourth-order generalized-screen propagator tends to be unsta-
ble in the presence of strong velocity variations (Zhang et al., 2009).
Consequently, we restrict the expansion used in this study to only the
third order. We obtain the optimized parameters, a; = —0.3710, a,
= —0.1413,and a; = —0.2311, using the optimization scheme pro-
posed by Liu and Zhang (2006). As shown in Figure 1, the third-or-
der OSP is a significant improvement over the generalized-screen
method and even is superior to the Fourier finite-difference method
for a wide range of lateral velocity variations. The third-order gener-
alized-screen method is superior to the Fourier finite-difference
method only when the velocity contrast (v-v,)/v X 100% is smaller
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Figure 1. Velocity contrast versus phase angle of propagators under
relative phase error of 2%. The velocity contrast is defined as (v
-vy)/v X 100%. A small velocity contrast denotes weak lateral ve-
locity variations, and a big one denotes strong lateral velocity varia-
tions. The dashed-dot line denotes the split-step Fourier method
(SSF); the dashed line denotes the Fourier finite-difference method
(FFD) with alternating-direction-implicit (ADI) — also called two-
way splitting — plus interpolation; the bold solid line denotes the
third-order optimum split-step Fourier propagator (OSP) used in this
study; the thin solid lines indicated by 14 denote the first four orders
of the generalized-screen propagator (GSP). Above the line, the er-
ror is larger than the chosen relative error; below, it is smaller.
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than 18% (see the vertical dotted line on the right in Figure 1).

In contrast, the optimized third-order OSPis superior to the Fouri-
er finite-difference method when the velocity contrast (v-vo)/v
X 100% is smaller than 45% (see the vertical dotted line on the leftin
Figure 1). The maximum accurate dip angle of the third-order OSPis
higher than that of the Fourier finite-difference method by as much
as 18°. The third-order OSP enables us to handle wide-angle propa-
gation in 3D complex media with moderate velocity contrasts.

Algorithm of the third-order OSP

Figure 2 shows a sketch map of downward extrapolation using the
third-order OSP. For each frequency component w, the wavefield ex-
trapolation from depth z to z + Az is implemented as

Plkykyz50) = F [P"(x,y,2;0)]

3 m—1
w 1
XN 1+ iAzew D, e
n=1 ];56'_1 SO

Fla,(s5— s2)"P"(x,y.z;0)]
FIP"(x.y.z:0)]

(11)

and
P"(x,y,z + Az;w) = expiwAsAZ)F,

X[exp(ikoAz) P(ky.ky,z;0)],
(12)

where k.o = Vw22 — k> — k?is the vertical wavenumber in reference
media with k, and k, being horizontal wavenumbers; and F rand F
denote 2D forward and inverse Fourier transforms along horizontal
space, respectively. In the phase-screen method (equation 12) and
the generalized-screen corrections (equation 11), the terms associat-
ed with spatial coordinates, (s3 — s2)" or As, are explicitly separated
from the terms associated with wavenumber variations k..

Thus the wavefield extrapolation can be implemented as a dual-
domain procedure in the frequency-space and frequency-wavenum-

Figure 2. Sketch map of the wavefield extrapolation from surface to
bottom for an independent frequency component. The big arrow
shows the iterative direction of wavefield extrapolation. Five depth
levels exist with the interval of Az. The gray plane denotes the cur-
rent extrapolation step at the depth of z. The filled circles denote the
extrapolated wavefield on grids, and the hollow circles denote the
wavefield to be extrapolated.
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ber domains alternately. The terms that contain spatial coordinates
are implemented in the spatial domain, and the terms that contain
horizontal wavenumbers are implemented in the wavenumber do-
main. In each domain, only pointwise operations are involved. Fast
Fourier transforms are used to transform wavefields between these
two domains. The split-step Fourier propagator requires a forward
and an inverse 2D Fourier transform for shuttling wavefields be-
tween these two domains as shown in equation 12. Each additional
term of the generalized-screen correction requires an additional for-
ward Fourier transform as shown in equation 11. Thus the Nth-order
OSP requires N + 2 Fourier transforms for wavefield extrapolation
ateach depth level.

Figure 3 shows the flowchart of one-way depth migration for ze-
ro-offset records. The downward extrapolation is the core of one-
way depth migration and is executed for each depth and for each fre-
quency. Thus, the number of 2D Fourier transforms for 3D poststack
migration using the third-order OSPis 5 X N,, X N, where N,, is the
number of frequency components and N, is the number of depth
steps. For shot-gather prestack migration using the third-order OSP,
the number of 2D Fourier transforms is 10 X N, X N. X Ng,o, Which
is as high as several billions, where N, is the total number of shots.
Furthermore, migration velocity analysis commonly is needed for
high-accuracy depth migration, which means additional multiples of
several tens (Shen and Symes, 2008).

ACCELERATING WITH GPU
Overview of GPU and CUDA

Graphics processing units consist of a cluster of processors at-
tached to a graphics card for extremely fast processing of large
graphics data sets. The GPUs feature optimized hardware architec-
ture for simultaneously performing a large number of independent
arithmetic operations in parallel mode. In contrast, the CPUs feature
optimized hardware architecture for more general operations in seri-
al mode, including data caching and flow control. The GPUs own
many more transistors devoted to data processing than the CPUs do,

| Velocity v(x, v, z) | | Traces P(x,y;t) |

FFT on each trace

| Extract slice at z | | Extract slice at |

] ]

| Downward extrapolation |

| z=z+Az | | Imaging condition | |w =w+ Awl
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@ Yes
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| Outputimage 1(x, y,z) |

Figure 3. A CPU-based flowchart of 3D poststack depth migration.
The velocity model has a maximum depth of z,,,, with a depth inter-
val of Az. The seismic record has a maximum frequency of w,,,, with
afrequency interval of Aw.
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and the highly parallel structure makes modern GPUs more attrac-
tive than general-purpose CPUs for intensive and highly parallel
computations. In recent years, the computing capabilities of GPUs
have been improved dramatically compared with general-purpose
CPUs. The peak floating-point operations per second of GPUs now
are about ten times those of CPUs. The graphics card with GPUs has
been used successfully as a coprocessor to speed up nongraphics ap-
plications, especially for parallel scientific computations.

Originally, the programmability of GPUs was very limited be-
cause of involving graphics-oriented details (Stone et al., 2007,
Muyan-Ozcelik et al., 2008). Recently, NVIDIA (2009) provided a
friendly development environment, named CUDA, which allows
the programmer to think in terms of memory and operation as in tra-
ditional CPU programs. Thus, the implementation of general-pur-
pose applications on the GPU has become much easier. Figure 4
shows the software architecture of CUDA-enabled GPU program-
ming. The CUDA uses the C programming language to define device
functions, named kernels. These kernels are called by the host (i.e.,
the computer host), similar to calling as regular C functions, but are
executed on the device (i.e., the graphics device) in parallel mode by
multiple threads. A warp is the scheduling unit in the streaming mul-
tiprocessors, and it manages threads in groups of 32. Kernels run on
a grid of blocks, and each block contains many warps. In implemen-
tation, each block is mapped to a multiprocessor, and each thread is
mapped to a single processor.

Several types of memory exist on GPUs, and each type has its own
benefits and limitations. In this study, we take advantage of only the
global memory, as the global memory space can contain large-vol-
ume data sets. However, the global memory is not cached; thus it is
important to follow the right access pattern to obtain maximum
memory bandwidth. If memory accesses are coalesced (NVIDIA,
2009), all the threads of a half-warp will access the memory simulta-
neously so that the performance will increase significantly. Other-
wise, with a noncoalesced pattern, the time consumption of global
memory access is about one order of magnitude higher.

Third-dimensional depth migration based on the one-way wave
equation is well suited to CUDA implementation on GPUs because it

Host Device

/IC program

Global memory

HostAFunction (03

Kernel<<<M,N>>>(Data);

v
\

Thread 7

<vW/|[wThread 0
<—'\IV\/\/V\/vThread 1
<—«/\A/\/V\/vThread 2
<vyW/|[wThread 3
<WW/|Thread 4
«\/V\I\/V\/»Thread 5
ﬂNV\/V\/»Thread 6

/

Figure 4. Software architecture of CUDA-enabled GPU program-
ming. The left part of the figure denotes the computer host, and the
right part denotes the graphics device. PCI Express denotes the PCI
interface between the host and the device. The host and device speci-
fications are listed in Tables 1 and 2, respectively.
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is data parallel and computationally intensive. In addition, the effi-
ciency of the OSP method is highly dependent on the speed of the
Fourier transform, whereas a GPU-based parallel algorithm of the
fast Fourier transform is available in the CUDA library. Tables 1 and
2 list the specifications of the host and the device used in our numeri-
cal experiments, respectively. We use only one core of the dual-core
CPU, and the wall-clock time is measured without considering the
disk input/output (I/O).

Benchmarking the fast Fourier transform

The CUDA distribution package includes a built-in software im-
plementation of the fast Fourier transform, named the cuFFT library,
which is a parallel implementation of the widely used CPU-based
fast Fourier transform, named the FFTW library (Frigo and Johnson,
1998). We measure the time consumption of the cuFFT and the
FFTW to evaluate the potential speedup. For simplicity, only results
for a square data set are shown in Figure 5. The integer power of 2
varies from 7 through 11; that is, the number of samples in both in-
line and crossline directions is 128, 256, 512, 1024, or 2048 points,
respectively. The average time consumption of each fast Fourier
transform is obtained by executing forward and inverse fast Fourier
transforms for 1000 times.

As shown in Figure 5, the cuFFT always is faster than the FFTW
for all listed data sets, and this trend is more significant for a data set
of larger size. For data sets of the dimensions 128 X 128 and 256
X 256, the cuFFT is only several times faster than the FFTW; how-
ever, for data sets of the dimensions 512 X512, 1024 X 1024, and
2048 X 2048, it is as much as 50 times faster than the FFTW. The
FFTW has relatively high speed when the size of the data set is not
bigger than 256 X 256 (Frigo and Johnson, 1998), whereas a small-
size cuFFT has too low computational intensity to develop the high
potential of the parallelism on the GPUs. Therefore, the cuFFT for a
small-size data set has less speedup than the FFTW compared with a
large-size data set.

Benchmarking the memory bandwidth of data transfer

The host and the device are connected using PCI Express, which
has a maximum bandwidth of 6.4 gigabytes per second (GB/s). In
contrast, the global memory (DDR3) on the device has a maximum
bandwidth of 102 GB/s. Our benchmarking of memory bandwidth

Table 1. Host specifications

Processor (CPU)
Memory
Motherboard
PCI interface

Intel Core2 Duo 2.53 GHz
2 GB, 800 MHz DDR2
Colorful C.P35 X7 Ver2.0
PCI Express GEN2 X 16

Table 2. Device specifications (GPUs)

Model NVIDIA GTX280
Global memory 1 GB, 1107 MHz DDR3
Number of multiprocessors 30

Threads per multiprocessor 1024
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shows that small-size data sets have a low bandwidth compared with
large-size data sets for data transfer either between the host and the
device or within the device. For example, the bandwidth using PCI
Express is about 2 GB/s for the data size of 64 K and is about
5 GB/s for 32 megabytes (MB) (a float array of 128 X 128, e.g., a
velocity slice, requires 64 K of memory, and a complex array of
2048 X 2048 requires 32 MB of memory). In contrast, the band-
width of data transfer within the device is 22 GB/s for the data size
of 64 K and is more than 100 GB/s for 32 MB.

As shown in Figure 5, the cuFFT is 39 to 51 times faster than the
FFTW for a large data set when the data transfer between the host
and the device is not involved. However, the cuFFT is only 18 to 19
times faster than the FFTW when the data transfer between the host
and the device is involved; that is, the time consumption caused by
the data transfer between the host and the device is larger than the
time consumption caused by the cuFFT. Therefore, we should mini-
mize data transfer between the host and the device to achieve a high
speedup. In addition, the data set should be as large as possible to ob-
tain a high bandwidth if data transfer is necessary between the host
and the device. We also should create intermediate data in the device
memory without ever being visited by the host.

CUDA Kkernels of the third-order OSP

For one-way depth migration, the whole 3D model is divided into
a serial of 2D horizontal slabs along the depth direction, and the gen-
eration of the wavefield in each slab requires the wavefield in the lat-
est slab and the velocity in the current slab. The corresponding GPU
implementation consists of the following four stages:

1) Upload the depth slice of the velocity and the frequency slice of
the wavefield from the host to the device.

2)  Perform wavefield extrapolation on the device by calling a seri-
al of kernels on the host.

3) Download the extrapolated wavefield from the device to the
host.

4)  Apply imaging conditions on the host.

60
50 /’\‘\‘
40 ®

Q

pom |

3 /

3 30

Q.

(%]

e

1282 2562 5122 10242 20482
Size of 2D complex FFT

Figure 5. Speedup of the GPU-based fast Fourier transform (i.e.,
cuFFT) over the CPU-based one (i.e., FFTW). The average time
consumption of 2D complex fast Fourier transform on a square data
set is obtained by executing forward and inverse fast Fourier trans-
forms for 1000 times. The filled circles on the upper line denote the
speedup of the cuFFT over the FFTW when there is no data transfer
between the host and the device for the cuFFT. The filled triangles on
the bottom line denote the speedup of the cuFFT over the FFTW
when data transfer between the host and the device is applied before
the forward transform and after the inverse transform.
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This implementation is capable of handling various sizes of 3D
velocity models because only several 2D slices of both velocity
model and wavefield are stored in the device memory. However, this
implementation is less improved in efficiency because there are too
many data transfers of the small-size data set between the host and
the device. The efficiency can be improved if the whole 3D velocity
model and the imaged data are stored in the device memory, where
data transfer of the small-size data set between the host and the de-
vice would be minimized. Unfortunately, the available amount of
device memory is limited; thus we should strive to minimize the
memory occupied by the 3D velocity model and imaged data. A fea-
sible way is to apply data compression.

Many advanced algorithms of data compression exist in digital
image processing. However, most of them are costly in either com-
pression or decompression procedures. Consequently, they are not
applicable to the data compression of the velocity model and image
data unless their GPU-accelerated algorithms are provided. In fact,
the values of velocities in the model always are positive and usually
vary within a fixed small range (e.g., 1000—6000 m/s), and the val-
ues of image data always vary within arange of —1 to 1. We suggest
two extremely efficient data compression/decompression schemes
to reduce the memory demand on the GPU by using data-type con-
version.

Data compression

The data type of the velocity array usually is defined as float,
which requires four bytes for each element. The unsigned integer
type defined by CUDA requires only two bytes for each element.
Thus we compress the 3D velocity model in the device memory by

| Velocity v(x, y,z) | | Traces P(x,y;t) |

FFT on each trace

Extract slice at

Upload to device

Compression on host

Upload to device

Extract slice at z

Decompression

| Downward extrapolation |

| z=z+Az | | Imaging condition | |w =w+ Awl

| Download image to host |

| Outputimage I(x,y,z) |

Figure 6. A GPU-based flowchart of 3D poststack depth migration
by reusing 3D data sets on GPUs with data compressions. The maxi-
mum depth of the velocity model is z,,,, with a depth interval of Az.
The maximum frequency of the seismic record is w,,,, with a fre-
quency interval of Aw.
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declaring its array as the unsigned integer type instead of the float
type. The compression/decompression scheme consists of five steps:

1) Load the 3D velocity model into a float array v(x,y,z) on the
host.

2) Define a scale factor as r = 65,535/ (Umax — Umin), Where the
constants v, and v, are the minimum and maximum values
of the 3D velocity model, respectively.

3) Compress the float array into an unsigned integer array by first
subtracting the minimum velocity v, of the whole model and
then rounding the float number to the nearest integer:

v3i(x,y,2) — Inf{[v(x,y,2) — Upinl X 1}

4)  Upload the constants v, 7, and the integer array v3i(x,y,z) to
the device.

5)  Extract the 2D velocity slice at depth z from v3i(x,y,z) before
performing wavefield extrapolation on the device and recover
as

v2f(x,y) «—v3i(x,y,2)/1 + Upin-

This compression to a 3D velocity model maps the velocity varia-
tions of 0 ~ (Vpax — Umin) to the unsigned integer range of 0-65,535.
The error, caused by rounding the float to the integer in the third step,
is proportional to the range of velocity variations (Umax — Umin)- In
practice, the absolute error caused by rounding is smaller than
0.05 m/s for velocities ranging from 1500 to 4500 m/s, and the rel-
ative error is smaller than 0.0033%. Therefore, this compression of
the velocity model is feasible for most practical applications.

Another large-volume data set stored in the device memory is the
image array. The amplitudes of 3D image data range from —1 to 1.
The short integer type (from —32,767 to 32,767) defined by CUDA
requires only two bytes for each element, rather than four bytes for
the float type. Thus we use the short integer array to store the image
data in the device memory. First the image data in each depth slice
are scaled by 32,767. Then they are accumulated into the short inte-
ger array of 3D image data when applying imaging conditions. Fi-
nally, the 3D image data are divided by 32,767 after transferring
back to the host. The relative error caused by this procedure is small-
er than 0.0031%.

Figure 6 shows the GPU-based flowchart of depth migration by
reusing 3D data sets on GPUs with data compressions. By using
these two compressions to the 3D velocity model and image data, we
save half the memory demand for large-volume data stored in the
limited device memory; thus the capable model size is doubled.
More importantly, they enable us to minimize the time consumption
caused by the low-bandwidth data transfer between the host and the
device for the larger 3D velocity model.

2D tapered function

An absorbing boundary condition is required to reduce numerical
artifacts caused by the boundaries of a limited model. Masking with
a tapered function to each side of the wavefield (Cerjan et al., 1985)
is popular and necessary to satisfy the periodicity requirement inher-
ent in the Fourier-based migration (Wild et al., 2000). Commonly,
only the samples of the attenuation function are stored in the memo-
ry and are applied to each side of the individual row and column. As a
passband, the center area is excluded to reduce computational cost.
This procedure is cost-effective for the CPU-based implementation;
however, it is costly for the GPU-based implementation for three
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reasons. First, this procedure consists of fewer parallelisms but more
serial operations. Second, it requires too many flow control instruc-
tions on judging array indices; the GPU-based code is less efficient
in flow control compared with the CPU-based code. Third, it leads to
a random memory access pattern that is much slower than a coa-
lesced memory access pattern.

To reduce the cost of applying absorbing boundary conditions on
GPUs, we should adapt to the parallel-computation architecture on
the device and obey the special rules of the memory access patterns.
We use a 2D tapered function, shown in Figure 7, instead of the com-
monly used 1D function. Samples in passband and attenuation band
are stored in a 2D array. This 2D tapered function is masked to the
wavefield by pointwise multiplication when the absorbing boundary
condition is applied. It allows fast parallel implementation on the
GPU without any flow control or a random memory access pattern;
thus it is very efficient, although some fruitless computations are
performed in the passband.

Compact architecture

Numerical experiments show that a compact kernel containing
more instructions is significantly faster than a sequence of kernels,
although they fulfill the same function. Therefore, we should incor-
porate several scattered kernels into a compact kernel as much as
possible. We incorporate the 2D tapered function and the scaling of
inverse Fourier transform into the time-shift kernel. In addition, we
incorporate the phase shift into the wavenumber-associated high-or-
der correction kernel. Unfortunately, the cuFFT could not be called
in the kernel produced by the programmer. Consequently, we have to

[ Attenuation; \Attenuation}

S 14 "band ~ band !

'-é_ E Passband —E\

< 0 ' | '
64

48

32

Sample number in crossline direction

0 16 32 48 64
Sample number in inline direction

Figure 7. A 2D tapered function for the parallel implementation of
the absorbing boundary condition. This function is generated in the
shape of a Hanning window. A unitary 2D array is scaled by the 1D
tapered function (shown in the upper part of Figure 7) first along the
inline direction and then along the crossline direction. The samples
in inline and crossline directions number 64 with the attenuation
band of 15 samples on each side. Masking with this 2D tapered func-
tion executes much faster than separately applying the row- and col-
umn-based 1D tapered function because the former actually is paral-
lel when executing on the GPU, but the latter involves a costly ran-
dom memory access pattern.
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exclude each cuFFT from the phase-shift kernel and the time-shift
kernel, although this leads to redundant and less effective code.
Figure 8 shows the pseudocode that applies the data compres-
sions, the 2D tapered function, and the compact scheme. The
pseudocode of copying each slice without the data compressions is
not shown because it can be obtained easily from Figure 8. This
pseudocode is consistent with the GPU-based flowchart shown in
Figure 6. The outer loop is over the independent frequency compo-
nents. The inner loop performs depth extrapolation iteratively from
the surface to the bottom of the model. Twelve kernels are included
in the inner loop for the third-order optimum split-step Fourier prop-
agator. Five kernels associated with forward or inverse Fourier
transforms are implemented by directly calling the CUDA library

/I Compress velocity on host and upload to device
r=65535/(v,. -V Il Initialize scale factor

v3i(x,y,z) < Int{[V (x,y,z)-v,, ]xr}; I Compress velocity

i(x,y,2) <<<0; /I Initialize image array

o<« 0;

for each frequency » do /I Loop over frequency

p(x,y) <= P(x,p;0); /I Upload to device
z«0;
for each depth z do /I Loop over depth

/I Extract and decompress velocity slice

d(x,y)<<< /¥ —1/[v3i(x,y,z)/r Vo |

p (x,y)<<<ap(x,y)d(x,y); Il First order

P (k.k)<<<F [p (x.y)]; /2D forward FFT
p, (x,y)<<< a,p(x,y)d’ (x.y); /I Second order
P (k..k, ) <<<F [p.(x.¥)]; /2D forward FFT
D (x,y) <<<a,p(x,y)d’ (x,y); /l Third order

P, (k..k,)<<< F} [p,(x.y)]; /2D forward FFT
F(kl.,k) ) << F [p(x.»)]:

/INormalization and phase shift
Py (k.. k, ) <<< p(k,.k, )exp(ik_,Az)x

N [1 + iAza)i B, (kok, ) (@ 2 =) B (k ok, )} ;

p(x.y)<<<F, [P (k.k)]: /2D inverse FFT
/I Scaling, absorbing boundary, and time shift
p(x,y) <<< p(x,y)exp(ia)AsAz)t(x,y)/(N_\_N)_ ) z
/I Scaling and imaging

i(x,y,2) <<<i(x,p,2) + Int] p(x,y)x32767 ;

z4< z+Az; /I Depth increase

/I 2D forward FFT

end
w<—o+Ao;

/I Frequency increase
end

I(x,y,2) < i(x,,2)/32767; // Download to host

Figure 8. Pseudocode of the GPU-based third-order optimum split-
step Fourier propagator (OSP). The array on the host is named using
a capital letter, and the array on the device is named using lowercase
letters. The sign “<" denotes data transfer between the host and the
device, and the sign “«" denotes assigning the value on the right
side to the variable on the left side. The part on the right side of the
sign “<&” denotes the kernel execution on the device, and the array
on the left side stores the results. The operator Int( -) rounds a float
number to the nearest integer, and the operator NV{ -) denotes the nor-
malizing operator. The constants v ,;, and v, are the minimum and
maximum values of the 3D velocity model, respectively. The refer-
ence velocity vy(z) is the minimum in the slice of 3D velocity at
depth z, which is used for the phase shift in a homogeneous back-
ground.
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(i.e., the cuFFT), and other kernels are cascaded to perform point-
wise operations either in the frequency-space domain or in the fre-
quency-wavenumber domain.

NUMERICAL EXAMPLES

Migration impulse responses

In this section, we illustrate the proposed GPU-based scheme on
three aspects using impulse responses: first, the numerical precision;
second, the performance of the third-order OSP in handling strong
velocity contrast; and third, the speedup over the CPU-based
scheme. A 3D homogeneous medium is defined on a grid system of
the dimensions 256 X 256 X 128 with grid spacing of 10 m. The real
velocity is v = 3000 m/s with the reference velocity being v,
= 1500 m/s, i.e., velocity contrast (v-vo)/v = 50%. All input trac-
es are zeros except that the central trace has a Ricker wavelet with the
dominant frequency of 25 Hz. The time delay of the wavelet is
375 ms with the sampling interval of 2 ms. Eighty frequency com-
ponents are calculated. The 2D tapered function is used in the GPU-
based code, and the 1D tapered function is used in the CPU-based
code. The attenuation band has 15 samples on each side of the 2D
wavefield.

Figure 9 shows the difference in the normalized images obtained

a) Crossline (km)
0.0 1.0 (x1072)

2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5

o
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Depth (km)

-
o

=
~

Inline (km)
—1.0 0.0 1.0

Crossline (km)

Figure 9. The difference in normalized images obtained by the CPU
and GPU implementations: (a) vertical slice along the crossline di-
rection at the inline position of 0 m; (b) depth slice at 640 m. The in-
tersection of the vertical and horizontal slices is shown by a dashed
line in each slice. The CPU implementation uses the FFTW, the 1D
tapered function but without data compression, and the GPU imple-
mentation uses the cuFFT, the 2D tapered function, as well as the
data compressions of the 3D velocity model and imaged data on the
device.

Zhangetal.

by CPU and GPU implementations. In the vertical slice (a), most
parts have small errors that are smaller than 0.5%, but apparent er-
rors arise in the upper side, and the maximum error even reaches 2%.
No wavenumber filter is used in our codes. If a wavenumber filter is
applied, the apparent error at the upper side of vertical slice (a)
would be reduced greatly. In the horizontal slice (b), the maximum
error is 0.4%. Apparent errors exist at the positions of boundary re-
flections in the crossline direction (see the two circular arcs) but not
the inline direction. This shows that the performance of the 2D ta-
pered function is slightly different from that of the 1D one.

In the CPU-based implementation, the 1D tapered function is ap-
plied after the wavefield extrapolation at depth z has finished. In the
GPU-based implementation, however, the 2D tapered function
t(x,y) shown in Figure 8 is applied when the wavefield extrapolation
is performing in parallel mode, and thus the boundary absorbing on
some positions might have finished before the wavefield extrapola-
tion. Thus some differences exist between the 1D and 2D tapered
functions in their actual performances. Fortunately, the differences
are negligible, as they are much smaller than 0.4%. In general, only
some distortions exist at the background or at the boundary reflec-
tions, and the error generally is smaller than 0.4%. Therefore, the ac-
curacy is well kept after using our computing scheme compared with
the original CPU-based computation.

The Fourier finite-difference method (Ristow and Riihl, 1994;
Biondi, 2002) is well known in imaging complex media with strong
velocity contrast. It is selected as a reference to evaluate the relative
performance of the third-order OSP. The two-way splitting error
(Brown, 1983) is removed using the wavenumber interpolation tech-
nique (Wang, 2001; Zhang et al., 2008). Figure 10 contains the slices
obtained from four methods: the Fourier finite-difference method,
the third-order OSP, the second-order generalized-screen method,
and the fourth-order generalized-screen method. Both depth and
vertical slices show that the optimized parameters can significantly
improve the accuracy of the generalized-screen propagator. The
third-order OSPis even more accurate than the fourth-order general-
ized-screen propagator. The accurate angle of the third-order OSP is
as high as 50° when the velocity contrast is 50%, which is slightly
lower than that of the Fourier finite-difference propagator. These
analyses are consistent with the previous relative error analyses
shown in Figure 1.

To check the speedup of the GPU-accelerated third-order OSP
over the CPU-based one, we tested on three additional models with
the dimensions 128 X 128 X 64, 512 X 512 X 256, and 1024 X 1024
X 512, respectively. The speedup of the GPU implementation over
the equivalent CPU implementation is measured by the ratio of wall-
clock times without considering the disk I/O (see Tables 1 and 2 for
CPU and GPU configurations). Figure 11 shows the results. Obvi-
ously, the scheme that copies slices of the velocity model and imaged
data to the device allows a much larger size of 3D model running on
the GPU. However, its speedup generally is lower than that of a
scheme that uploads the whole 3D velocity model to the device be-
fore migration and downloads the whole set of 3D imaged data back
to the host after migration. For example, the speedup of copying
each slice is only 17 for the 256 X 256 X 128 model; in contrast, the
speedup of copying the whole is about 27 for the same model. For
another example, the speedup of copying each slice is only 25 for the
512X 512X 256 model; in contrast, the speedup of copying the
whole is about 37 for the same model.

The speedup of migration impulse response is somewhat different
from the speedup of the cuFFT over the FFTW shown in Figure 5.
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For a small-size data set (e.g., 128 X 128 or 256 X 256), the total
speedup of the algorithm is higher than the speedup of the cuFFT
over the FFTW; whereas, for a large-size data set (e.g., 512X 512 or
1024 X 1024), the total speedup of the algorithm is lower than the
speedup of the cuFFT over the FFTW. This shows that the Fourier
transform is the most time-consuming part for the CPU-based algo-
rithm of Fourier depth migration but not for the GPU-based algo-
rithm, and other parts besides the Fourier transform would have
more effect on the total speedup. The speedup of other parts lies be-
tween the speedup of the cuFFT over the FFTW for a small-size data
set and that for a large-size data set.

Migration for the SEG/EAGE salt model

To verify accuracy and efficiency of the GPU-based third-order
OSP on imaging 3D complex structures, we ran tests on zero-offset

a) Inline (km)
10 —05 0 05 1.0

b) Inline (km)
1.0 —05 0 05 1.0

Crossline (km)

Figure 10. (a) Vertical slice, and (b) depth slice, from 3D migration
impulse response. The dashed circle (or semicircle) denotes the ex-
act position. The left part of Figure 10a shows the superposition of
the vertical slices obtained by the Fourier finite-difference method
with alternating-direction-implicit (ADI) plus interpolation (indi-
cated by FFD) and the second-order generalized screen propagator
(indicated by GSP2). The right part of Figure 10a shows the superpo-
sition of the vertical slices obtained by the fourth-order generalized
screen propagator (indicated by GSP4) and the third-order optimum
split-step Fourier propagator (indicated by OSP3). The horizontal
slice consists of four equivalent parts: the upper left quadrant shows
the Fourier finite-difference method with ADI plus interpolation (in-
dicated by FFD); the bottom left quadrant shows the second-order
generalized screen propagator (indicated by GSP2); the bottom right
quadrant shows the fourth-order generalized screen propagator (in-
dicated by GSP4); the upper right quadrant shows the third-order op-
timum split-step Fourier propagator (indicated by OSP3).

WCA137

records (Ober et al., 1997) of the SEG/EAGE salt velocity model
(Aminzadeh et al., 1996). The 3D grid system used here is of the di-
mensions 250 X 250 X 210 with a spacing of 40 m along the trans-
versal direction and 20 m along the depth direction. Eighty frequen-
cy components are calculated. The 2D tapered function is used for
the GPU-based code, and the 1D tapered function is used for the
CPU-based code.

Figure 12 shows the vertical slice (at the inline position of
5000 m) and horizontal slice (at the depth of 2010 m) of the 3D ve-
locity model and corresponding slices of the image obtained by the
GPU-based third-order OSP. Obviously, salt boundaries and the
structures under the salt body are well imaged except that some arti-
facts still exist in the salt body. Of course, the sharp peaks on the salt
boundary are not well focused. This is because velocity contrasts and
the dip angle at those positions exceed the upper limit of the third-or-
der OSP’s capabilities (see the left part of the bold black line in Fig-
ure 1). This result is comparable to the result obtained by the Fourier
finite-difference method (Zhang et al., 2009).

The code of the CPU-based third-order OSP runs 595.02 s,
whereas the GPU-accelerated code runs 18.52 s. The latter runs 32
times faster than the former does. This speedup overall is consistent
with the results shown in Figure 11.

DISCUSSION

We accelerate the wavefield extrapolation using GPUs by fully
taking advantage of the coalesced global memory access and the
CUDA library of Fourier transforms. A very attractive point for our
computing scheme is that it is easy to use and implement because
only the global memory is used to pursue safely porting in an instant
manner. Of course, great potential still exists to improve the speedup
ratio by correctly using shared memory and registers within a block.
However, the effective use of shared memory typically requires a
complete overhaul of the algorithm and its mapping to the GPUs.
This might be impractical for most geophysicists; thus we need a
trade-off between the speedup ratio and the feasibility for practical
applications. We tend to achieve a relatively high speedup ratio over
the equivalent CPU-based algorithm, but without expending too
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Figure 11. Speedup of the GPU-based third-order OSP over the
CPU-based one. Only the velocity models with dimensions 128
X 128 X 64,256 X256 X 128, and 512 X 512 X 256 are tested for the
scheme with data compressions (see circles on the upper line) be-
cause of the memory limitation. The triangles on the lower line de-
note the scheme copying each slice separately.
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Figure 12. Migration test on the 3D SEG/EAGE salt model using the
GPU-based third-order optimum split-step Fourier propagator
(OSP). (a) Vertical profile of model along the crossline direction at
the inline position of 5000 m, and (b) corresponding image. (c)
Depth slice of model, and (d) corresponding image, at the depth of
2010 m.

much effort in porting the existing code to CUDA-enabled GPUs.

Although only the third-order OSPis illustrated, most elements of
the proposed scheme can be applied easily to other kinds of Fourier-
based 3D migrations. It is easy to extend all techniques to prestack
migration because the prestack migration (e.g., shot-gather prestack
migration) contains two similar parts (only the sign and the input
data are different between downward and upward extrapolations). It
is easy also to extend our scheme to multi-GPU implementation to
obtain a much higher speedup ratio.

CONCLUSIONS

Cost is historically a major factor that inhibits the routine use of
3D wave-equation migration in practice. For example, the velocity
updating requires several tens of iterations of 3D depth migration,
and each iteration could run for several days even with high-perfor-
mance PC clusters. However, the geologic interpretations must wait
until the final migration results are obtained. Consequently, we must
drop some traces or shots occasionally to obtain the result in a rea-
sonable time. This could lead to low resolution, although we have
had enough field data to produce good results. Only with a magni-
tude of speedup is it practical to achieve much higher resolution by
taking more field data into account.

In this study, we present a computing scheme to speed up high-or-
der Fourier migration using a GPU-based library of the fast Fourier
transform. We copy the whole 3D velocity model to the device mem-
ory before migration and copy the whole set of 3D imaged data back
to the host after migration. This scheme greatly reduces the time con-
sumption caused by the low bandwidth of data transfer between the
host and the device. We reduce half the memory demand by applying
data compressions to the 3D velocity model and the 3D imaged data.
This scheme is feasible for most scales of current 3D explorations.
We also suggest a 2D tapered function for boundary conditions,
which is suitable for parallel implementation on GPUs. We incorpo-
rate both boundary conditions using the 2D tapered function and the
scaling of inverse Fourier transform into the time-shift kernel. This

Zhangetal.

scheme reduces the time consumption caused by the random memo-
ry access pattern involved and by scattered kernels.

The proposed GPU-accelerated scheme speeds up the third-order
OSP over the CPU-based implementation by 25 to 40 times. A task
that would have run for a whole month before now will run for only
about a day, which means the overall computational cost has been re-
duced by more than 95%. The proposed scheme allows us to produce
a satisfactory image in a much shorter turnaround time when updat-
ing the migration velocity. This scheme is consistent also with pre-
vailing systems of PC clusters. The combination of GPU-accelerat-
ed Fourier propagators and PC clusters would, in terms of computa-
tional efficiency, make the wave-equation migration comparable to
Kirchhoff migration.
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