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ABSTRACT

Computational cost is a major factor that inhibits the prac-
tical application of 3D depth migration. We have developed a
fast parallel scheme to speed up 3D wave-equation depth mi-
gration on a parallel computing device, i.e., on graphics pro-
cessing units �GPUs�. The third-order optimized general-
ized-screen propagator is used to take advantage of the built-
in software implementation of the fast Fourier transform. The
propagator is coded as a sequence of kernels that can be
called from the computer host for each frequency compo-
nent. Moving the wavefield extrapolation for each depth lev-
el to the GPUs allows handling a large 3D velocity model, but
this scheme can be speeded up to a limited degree over the
CPU implementation because of the low-bandwidth data
transfer between host and device. We have created further
speedup in this extrapolation scheme by minimizing the low-
bandwidth data transfer, which is done by storing the 3D ve-
locity model and imaged data in the device memory, and re-
ducing half the memory demand by compressing the 3D ve-
locity model and imaged data using integer arrays instead of
float arrays. By incorporating a 2D tapered function, time-
shift propagator, and scaling of the inverse Fourier transform
into a compact kernel, the computation time is reduced great-
ly. Three-dimensional impulse responses and synthetic data
examples have demonstrated that the GPU-based Fourier mi-
gration typically is 25 to 40 times faster than the CPU-based
implementation. It enables us to image complex media using
3D depth migration with little concern for computational
cost. The macrovelocity model can be built in a much shorter
turnaround time.

INTRODUCTION

The one-way wave-equation method plays an important role in
he fields of seismic modeling and depth migration �Claerbout,
985; Wu, 1994; Xie and Wu, 2001�. It can handle multipathing
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avefields naturally �Le Rousseau and de Hoop, 2001� and has at-
ractive storage demand with a depth-iterative algorithm �Claerbout,
985�. Unfortunately, 3D prestack depth migration is difficult to use
outinely because of high computational cost. A typical 3D prestack
epth migration might run for several weeks, even with powerful aid
rom high-performance computer �PC� clusters. Furthermore, build-
ng the macrovelocity model for depth migration requires many iter-
tions of wavefield extrapolation �Shen and Symes, 2008�. There-
ore, computational efficiency of the wavefield propagator is still a
ajor bottleneck in the practical application of one-way depth mi-

ration.
During the last three decades, various one-way wave-equation
ethods based on Fourier transforms have been developed for imag-

ng complex media �Gazdag, 1978; Gazdag and Sguazzero, 1984;
toffa et al., 1990; Wu, 1994; Huang et al., 1999a, Huang et al.,
999b; de Hoop et al., 2000; Huang and Fehler, 2000; Chen and Liu,
004; Fu, 2005; Liu and Zhang, 2006; Zhang and Liu, 2007�. Com-
ared with the finite-difference method �Claerbout, 1985; Hale,
991�, the Fourier method is immune to the two-way splitting error
Brown, 1983� in 3D cases and has almost no numerical dispersion
or coarse grids and high frequencies. The Fourier method also is rel-
tively effective because of using fast Fourier transforms. The gen-
ralized-screen propagator �de Hoop et al., 2000; Le Rousseau and
e Hoop, 2001� is a general form of the high-order Fourier method,
ut it is accurate only for weak velocity contrasts �Zhang et al.,
009�. Liu and Zhang �2006� significantly improve the accuracy of
he generalized-screen propagator by optimizing the constant coeffi-
ients while keeping the algorithm structure.

However, high-order terms are needed to handle wide-angle prop-
gation in the presence of strong lateral velocity variations, which
equire many more 2D Fourier transforms to shuttle the wavefield
etween the spatial and wavenumber domains. Zhang et al. �2009�
how that the third-order generalized-screen propagator �de Hoop et
l., 2000� is slower than the Fourier finite-difference method �Ris-
ow and Rühl, 1994�, although the fastest CPU-based Fourier trans-
orm is used. Therefore, the speed of the Fourier transform is the ma-
or factor that impacts the computational efficiency of 3D Fourier

igration. However, the 3D Fourier migration has great potential to
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WCA130 Zhang et al.
e accelerated in the presence of an enhanced fast algorithm of the
ourier transform.
In recent years, the computing capacities of graphics processing

nits �GPUs� have been improved enormously. With multiple cores
riven by high-memory bandwidth, today’s GPUs offer tremendous
omputational resources for graphics processing and general-pur-
ose computations. The latest GPUs even can perform more than
00 billion floating-point operations per second, which is more than
ne order of magnitude faster than the latest Intel CPUs. The compil-
r and development tools, called compute unified device architec-
ure �CUDA�, provide an easily accessible way to generate parallel
ode for execution on GPUs. The CUDA-enabled GPU has been
sed in many fields of scientific computation �Stantchev et al.,
008�, such as medical imaging �Muyan-Ozcelik et al., 2008� and
olecular mechanics simulations �Stone et al., 2007; Yang et al.,

007�. Recently, the CUDA-enabled GPU also has been used for ex-
licit finite-difference depth migration �Hale, 1991� and Kirchhoff
ime migration �Li et al., 2009�.

In this study, we present a GPU-based computing scheme to ac-
elerate the 3D Fourier depth migration. We use the third-order opti-
ized generalized-screen propagator �de Hoop et al., 2000; Liu and
hang, 2006� to take advantage of the CUDA library of fast Fourier

ransform. For each frequency component, the propagator is coded
s a sequence of CUDA kernels that can be called in terms of func-
ions when the wavefield is downward extrapolated iteratively from
he surface to the bottom of the velocity model. Each kernel is tai-
ored for the specific architecture and parallel implementation on the
PUs. Numerical experiments show that our GPU-based parallel

ode runs 25 to 40 times faster than the traditional CPU-based serial
ode.

Our computing scheme is easy to use and implement. It performs
ast Fourier transforms, the major parts of the Fourier depth propa-
ator, by calling the CUDA library, and it involves using only the
lobal memory of the graphics device, which can be used safely in an
nstant manner. This computing scheme provides us with a very sim-
le way to accelerate depth migration using fashionable GPUs. It en-
bles us to achieve a relatively high speedup ratio over the equiva-
ent CPU-based algorithm but without expending too much effort in
orting the existing code to the CUDA-enabled GPU.

First we review the generalized-screen propagator. Then we
enchmark the speed of the GPU-based fast Fourier transform and
he memory bandwidth of data transfer. Next we construct a comput-
ng scheme for 3D Fourier migration to cater to the CUDA imple-

entation on GPUs. Finally, we demonstrate the proposed scheme
sing impulse responses and synthetic data of the SEG/EAGE salt
odel �Aminzadeh et al., 1996�.

METHODOLOGY

eview of the generalized-screen propagator

The downward one-way wave equation for 3D depth migration
eads �Claerbout, 1985�

� P�x,y,z;��
� z

� ikzP�x,y,z;��, �1�

ith the square-root operator defined as kz

��2s2�� 2 /�x2�� 2 /� y2, where the slowness s is the reciprocal
f the velocity v�x,y,z�, i���1 is the imaginary unit, � is the cir-
Downloaded 17 Dec 2009 to 159.226.119.194. Redistribution subject to
ular frequency, and P�x,y,z;�� is the wavefield in frequency do-
ain. The formal solution of equation 1 is

P�x,y,z��z;���exp�ikz�z�P�x,y,z;��, �2�

here �z is the thickness of a thin horizontal slab �i.e., depth inter-
al�.

For laterally varying media, a constant reference velocity function
0�z� can be introduced to handle the homogeneous background for
ach depth step �Stoffa et al., 1990; Wu, 1994�. Rewriting the opera-
or kz as kz�kz0

�1� ��2s0
2��2s2� /kz0

2 and expanding it by Taylor
xpansion, we obtain

kz�kz0�kz0 �
n�1

�

an��2s0
2��2s2

kz0
2 �n

, �3�

here kz0���2s0
2�� 2 /�x2�� 2 /� y2; s0�1 /v0�z� is the reference

lowness, and an are constant coefficients with the first four being a1

�1 /2, a2��1 /8, a3��1 /16, and a4��5 /128, respective-
y. Considering

�s�s�s0�s0 �
n�1

�

an�1�
s2

s0
2�n

, �4�

e obtain kz �kz0���s�kz
GS, where �s�s�s0 is the perturba-

ion of slowness between the real slowness s and the reference slow-
ess s0, and

kz
GS�� �

n�1

N

an�s0
2�s2�n��2n�1

kz0
2n�1 �

1

s0
2n�1� �5�

s the Nth-order propagator of the generalized-screen method �de
oop et al., 2000�.
The formal solution of the one-way wave equation, equation 2,

an be decomposed for laterally varying media into three cascaded
quations,

P��x,y,z��z;���exp�ikz0�z�P�x,y,z;��, �6�

P��x,y,z��z;���exp�i��s�z�P��x,y,z

��z;��, �7�

nd

P�x,y,z��z;���exp�ikz
GS�z�P��x,y,z��z;�� . �8�

quation 6 performs the phase shift for the reference slowness s0 in
he wavenumber domain �Gazdag, 1978�; equation 7 performs the
ime-delay correction for slowness perturbations in the spatial do-

ain �Stoffa et al., 1990; Wu, 1994�; and equation 8 handles the
igh-order corrections for large velocity contrasts and wide-angle
ropagations �Le Rousseau and de Hoop, 2001�.

In the implementation, however, another Taylor expansion �i.e.,
x �1�x� is required on the exponential function in equation 8 to
xplicitly separate the spatial and wavenumber variations �Le Rous-
eau and de Hoop, 2001�, i.e., the generalized-screen correction

P�x,y,z��z;����1� ikz
GS�z�P��x,y,z��z;�� . �9�

e Hoop et al. �2000� propose a normalization operator N to handle
he stability and to reduce the phase error caused by the Taylor ex-
ansion used in equation 9, which reads
 SEG license or copyright; see Terms of Use at http://segdl.org/
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GPU-accelerated 3D Fourier migration WCA131
N�1�p� iq��exp�iq��1�
p

1� iq
��1�1�

p

1� iq
�,

�10�

here p and q denote the real part and imaginary part of a complex
umber, respectively.

ccuracy of the third-order optimum split-step
ourier propagator

Phase error versus velocity contrast is shown in Figure 1 follow-
ng the work by Zhang et al. �2009�. Obviously, the low-order gener-
lized-screen propagator is accurate enough for wide-angle propa-
ation in media with weak velocity contrast; however, a high-order
eneralized-screen propagator is needed to handle the wide-angle
ropagation in media with moderate and strong velocity contrasts.
iu and Zhang �2006� significantly improve the accuracy of the gen-
ralized-screen propagator by optimizing the constant coefficients
n while retaining the algorithm structure. The resultant propagator,
amed the optimum split-step Fourier propagator �OSP�, enables us
o image much steeper dips in complex media.

The fourth-order generalized-screen propagator tends to be unsta-
le in the presence of strong velocity variations �Zhang et al., 2009�.
onsequently, we restrict the expansion used in this study to only the

hird order. We obtain the optimized parameters, a1��0.3710, a2

�0.1413, and a3��0.2311, using the optimization scheme pro-
osed by Liu and Zhang �2006�. As shown in Figure 1, the third-or-
er OSP is a significant improvement over the generalized-screen
ethod and even is superior to the Fourier finite-difference method

or a wide range of lateral velocity variations. The third-order gener-
lized-screen method is superior to the Fourier finite-difference
ethod only when the velocity contrast �v-v0� /v�100% is smaller

igure 1. Velocity contrast versus phase angle of propagators under
elative phase error of 2%. The velocity contrast is defined as �v
v0� /v�100%. A small velocity contrast denotes weak lateral ve-
ocity variations, and a big one denotes strong lateral velocity varia-
ions. The dashed-dot line denotes the split-step Fourier method
SSF�; the dashed line denotes the Fourier finite-difference method
FFD� with alternating-direction-implicit �ADI� — also called two-
ay splitting — plus interpolation; the bold solid line denotes the

hird-order optimum split-step Fourier propagator �OSP� used in this
tudy; the thin solid lines indicated by 1–4 denote the first four orders
f the generalized-screen propagator �GSP�. Above the line, the er-
or is larger than the chosen relative error; below, it is smaller.
Downloaded 17 Dec 2009 to 159.226.119.194. Redistribution subject to
han 18% �see the vertical dotted line on the right in Figure 1�.
In contrast, the optimized third-order OSP is superior to the Fouri-

r finite-difference method when the velocity contrast �v-v0� /v
100% is smaller than 45% �see the vertical dotted line on the left in

igure 1�. The maximum accurate dip angle of the third-order OSPis
igher than that of the Fourier finite-difference method by as much
s 18°. The third-order OSP enables us to handle wide-angle propa-
ation in 3D complex media with moderate velocity contrasts.

lgorithm of the third-order OSP

Figure 2 shows a sketch map of downward extrapolation using the
hird-order OSP. For each frequency component �, the wavefield ex-
rapolation from depth z to z��z is implemented as

P̄�kx,ky,z;���Fx,y
� 	P��x,y,z;��


�N�1� i�z� �
n�1

3 ��2n�1

k̄z0
2n�1

�
1

s0
2n�1�

�
Fx,y

� 	an�s0
2�s2�nP��x,y,z;��


Fx,y
� 	P��x,y,z;��
 � �11�

nd

P��x,y,z��z;���exp�i��s�z�Fx,y
�

�	exp�ik̄z0�z�P̄�kx,ky,z;��
,

�12�

here k̄z0���2s0
2�kx

2�ky
2 is the vertical wavenumber in reference

edia with kx and ky being horizontal wavenumbers; and Fx,y
� and Fx,y

�

enote 2D forward and inverse Fourier transforms along horizontal
pace, respectively. In the phase-screen method �equation 12� and
he generalized-screen corrections �equation 11�, the terms associat-
d with spatial coordinates, �s0

2�s2�n or �s, are explicitly separated
rom the terms associated with wavenumber variations k̄z0.

Thus the wavefield extrapolation can be implemented as a dual-
omain procedure in the frequency-space and frequency-wavenum-

Surface

Bottom

O

igure 2. Sketch map of the wavefield extrapolation from surface to
ottom for an independent frequency component. The big arrow
hows the iterative direction of wavefield extrapolation. Five depth
evels exist with the interval of �z. The gray plane denotes the cur-
ent extrapolation step at the depth of z. The filled circles denote the
xtrapolated wavefield on grids, and the hollow circles denote the
avefield to be extrapolated.
 SEG license or copyright; see Terms of Use at http://segdl.org/
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WCA132 Zhang et al.
er domains alternately. The terms that contain spatial coordinates
re implemented in the spatial domain, and the terms that contain
orizontal wavenumbers are implemented in the wavenumber do-
ain. In each domain, only pointwise operations are involved. Fast
ourier transforms are used to transform wavefields between these

wo domains. The split-step Fourier propagator requires a forward
nd an inverse 2D Fourier transform for shuttling wavefields be-
ween these two domains as shown in equation 12. Each additional
erm of the generalized-screen correction requires an additional for-
ard Fourier transform as shown in equation 11. Thus the Nth-order
SP requires N�2 Fourier transforms for wavefield extrapolation

t each depth level.
Figure 3 shows the flowchart of one-way depth migration for ze-

o-offset records. The downward extrapolation is the core of one-
ay depth migration and is executed for each depth and for each fre-
uency. Thus, the number of 2D Fourier transforms for 3D poststack
igration using the third-order OSP is 5�N� �Nz, where N� is the

umber of frequency components and Nz is the number of depth
teps. For shot-gather prestack migration using the third-order OSP,
he number of 2D Fourier transforms is 10�N� �Nz �Nshot, which
s as high as several billions, where Nshot is the total number of shots.
urthermore, migration velocity analysis commonly is needed for
igh-accuracy depth migration, which means additional multiples of
everal tens �Shen and Symes, 2008�.

ACCELERATING WITH GPU

verview of GPU and CUDA

Graphics processing units consist of a cluster of processors at-
ached to a graphics card for extremely fast processing of large
raphics data sets. The GPUs feature optimized hardware architec-
ure for simultaneously performing a large number of independent
rithmetic operations in parallel mode. In contrast, the CPUs feature
ptimized hardware architecture for more general operations in seri-
l mode, including data caching and flow control. The GPUs own
any more transistors devoted to data processing than the CPUs do,

igure 3. A CPU-based flowchart of 3D poststack depth migration.
he velocity model has a maximum depth of zmax with a depth inter-
al of �z. The seismic record has a maximum frequency of �max with
frequency interval of ��.
Downloaded 17 Dec 2009 to 159.226.119.194. Redistribution subject to
nd the highly parallel structure makes modern GPUs more attrac-
ive than general-purpose CPUs for intensive and highly parallel
omputations. In recent years, the computing capabilities of GPUs
ave been improved dramatically compared with general-purpose
PUs. The peak floating-point operations per second of GPUs now
re about ten times those of CPUs. The graphics card with GPUs has
een used successfully as a coprocessor to speed up nongraphics ap-
lications, especially for parallel scientific computations.

Originally, the programmability of GPUs was very limited be-
ause of involving graphics-oriented details �Stone et al., 2007;
uyan-Ozcelik et al., 2008�. Recently, NVIDIA �2009� provided a

riendly development environment, named CUDA, which allows
he programmer to think in terms of memory and operation as in tra-
itional CPU programs. Thus, the implementation of general-pur-
ose applications on the GPU has become much easier. Figure 4
hows the software architecture of CUDA-enabled GPU program-
ing. The CUDAuses the C programming language to define device

unctions, named kernels. These kernels are called by the host �i.e.,
he computer host�, similar to calling as regular C functions, but are
xecuted on the device �i.e., the graphics device� in parallel mode by
ultiple threads.Awarp is the scheduling unit in the streaming mul-

iprocessors, and it manages threads in groups of 32. Kernels run on
grid of blocks, and each block contains many warps. In implemen-

ation, each block is mapped to a multiprocessor, and each thread is
apped to a single processor.
Several types of memory exist on GPUs, and each type has its own

enefits and limitations. In this study, we take advantage of only the
lobal memory, as the global memory space can contain large-vol-
me data sets. However, the global memory is not cached; thus it is
mportant to follow the right access pattern to obtain maximum

emory bandwidth. If memory accesses are coalesced �NVIDIA,
009�, all the threads of a half-warp will access the memory simulta-
eously so that the performance will increase significantly. Other-
ise, with a noncoalesced pattern, the time consumption of global
emory access is about one order of magnitude higher.
Third-dimensional depth migration based on the one-way wave

quation is well suited to CUDAimplementation on GPUs because it
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igure 4. Software architecture of CUDA-enabled GPU program-
ing. The left part of the figure denotes the computer host, and the

ight part denotes the graphics device. PCI Express denotes the PCI
nterface between the host and the device. The host and device speci-
cations are listed in Tables 1 and 2, respectively.
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GPU-accelerated 3D Fourier migration WCA133
s data parallel and computationally intensive. In addition, the effi-
iency of the OSP method is highly dependent on the speed of the
ourier transform, whereas a GPU-based parallel algorithm of the
ast Fourier transform is available in the CUDAlibrary. Tables 1 and
list the specifications of the host and the device used in our numeri-
al experiments, respectively. We use only one core of the dual-core
PU, and the wall-clock time is measured without considering the
isk input/output �I/O�.

enchmarking the fast Fourier transform

The CUDA distribution package includes a built-in software im-
lementation of the fast Fourier transform, named the cuFFT library,
hich is a parallel implementation of the widely used CPU-based

ast Fourier transform, named the FFTW library �Frigo and Johnson,
998�. We measure the time consumption of the cuFFT and the
FTW to evaluate the potential speedup. For simplicity, only results
or a square data set are shown in Figure 5. The integer power of 2
aries from 7 through 11; that is, the number of samples in both in-
ine and crossline directions is 128, 256, 512, 1024, or 2048 points,
espectively. The average time consumption of each fast Fourier
ransform is obtained by executing forward and inverse fast Fourier
ransforms for 1000 times.

As shown in Figure 5, the cuFFT always is faster than the FFTW
or all listed data sets, and this trend is more significant for a data set
f larger size. For data sets of the dimensions 128�128 and 256
256, the cuFFT is only several times faster than the FFTW; how-

ver, for data sets of the dimensions 512�512, 1024�1024, and
048�2048, it is as much as 50 times faster than the FFTW. The
FTW has relatively high speed when the size of the data set is not
igger than 256�256 �Frigo and Johnson, 1998�, whereas a small-
ize cuFFT has too low computational intensity to develop the high
otential of the parallelism on the GPUs. Therefore, the cuFFT for a
mall-size data set has less speedup than the FFTW compared with a
arge-size data set.

enchmarking the memory bandwidth of data transfer

The host and the device are connected using PCI Express, which
as a maximum bandwidth of 6.4 gigabytes per second �GB/s�. In
ontrast, the global memory �DDR3� on the device has a maximum
andwidth of 102 GB /s. Our benchmarking of memory bandwidth

able 1. Host specifications

rocessor �CPU� Intel Core2 Duo 2.53 GHz

emory 2 GB, 800 MHz DDR2

otherboard Colorful C.P35 X7 Ver2.0

CI interface PCI Express GEN2�16

able 2. Device specifications (GPUs)

odel NVIDIA GTX280

lobal memory 1 GB, 1107 MHz DDR3

umber of multiprocessors 30

hreads per multiprocessor 1024
Downloaded 17 Dec 2009 to 159.226.119.194. Redistribution subject to
hows that small-size data sets have a low bandwidth compared with
arge-size data sets for data transfer either between the host and the
evice or within the device. For example, the bandwidth using PCI
xpress is about 2 GB /s for the data size of 64 K and is about
GB /s for 32 megabytes �MB� �a float array of 128�128, e.g., a

elocity slice, requires 64 K of memory, and a complex array of
048�2048 requires 32 MB of memory�. In contrast, the band-
idth of data transfer within the device is 22 GB /s for the data size
f 64 K and is more than 100 GB /s for 32 MB.

As shown in Figure 5, the cuFFT is 39 to 51 times faster than the
FTW for a large data set when the data transfer between the host
nd the device is not involved. However, the cuFFT is only 18 to 19
imes faster than the FFTW when the data transfer between the host
nd the device is involved; that is, the time consumption caused by
he data transfer between the host and the device is larger than the
ime consumption caused by the cuFFT. Therefore, we should mini-

ize data transfer between the host and the device to achieve a high
peedup. In addition, the data set should be as large as possible to ob-
ain a high bandwidth if data transfer is necessary between the host
nd the device. We also should create intermediate data in the device
emory without ever being visited by the host.

UDA kernels of the third-order OSP

For one-way depth migration, the whole 3D model is divided into
serial of 2D horizontal slabs along the depth direction, and the gen-
ration of the wavefield in each slab requires the wavefield in the lat-
st slab and the velocity in the current slab. The corresponding GPU
mplementation consists of the following four stages:

� Upload the depth slice of the velocity and the frequency slice of
the wavefield from the host to the device.

� Perform wavefield extrapolation on the device by calling a seri-
al of kernels on the host.

� Download the extrapolated wavefield from the device to the
host.

� Apply imaging conditions on the host.

igure 5. Speedup of the GPU-based fast Fourier transform �i.e.,
uFFT� over the CPU-based one �i.e., FFTW�. The average time
onsumption of 2D complex fast Fourier transform on a square data
et is obtained by executing forward and inverse fast Fourier trans-
orms for 1000 times. The filled circles on the upper line denote the
peedup of the cuFFT over the FFTW when there is no data transfer
etween the host and the device for the cuFFT. The filled triangles on
he bottom line denote the speedup of the cuFFT over the FFTW
hen data transfer between the host and the device is applied before

he forward transform and after the inverse transform.
 SEG license or copyright; see Terms of Use at http://segdl.org/
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WCA134 Zhang et al.
This implementation is capable of handling various sizes of 3D
elocity models because only several 2D slices of both velocity
odel and wavefield are stored in the device memory. However, this

mplementation is less improved in efficiency because there are too
any data transfers of the small-size data set between the host and

he device. The efficiency can be improved if the whole 3D velocity
odel and the imaged data are stored in the device memory, where

ata transfer of the small-size data set between the host and the de-
ice would be minimized. Unfortunately, the available amount of
evice memory is limited; thus we should strive to minimize the
emory occupied by the 3D velocity model and imaged data. A fea-

ible way is to apply data compression.
Many advanced algorithms of data compression exist in digital

mage processing. However, most of them are costly in either com-
ression or decompression procedures. Consequently, they are not
pplicable to the data compression of the velocity model and image
ata unless their GPU-accelerated algorithms are provided. In fact,
he values of velocities in the model always are positive and usually
ary within a fixed small range �e.g., 1000–6000 m /s�, and the val-
es of image data always vary within a range of �1 to 1. We suggest
wo extremely efficient data compression/decompression schemes
o reduce the memory demand on the GPU by using data-type con-
ersion.

ata compression

The data type of the velocity array usually is defined as float,
hich requires four bytes for each element. The unsigned integer

ype defined by CUDA requires only two bytes for each element.
hus we compress the 3D velocity model in the device memory by

igure 6. A GPU-based flowchart of 3D poststack depth migration
y reusing 3D data sets on GPUs with data compressions. The maxi-
um depth of the velocity model is zmax with a depth interval of �z.
he maximum frequency of the seismic record is �max with a fre-
uency interval of ��.
Downloaded 17 Dec 2009 to 159.226.119.194. Redistribution subject to
eclaring its array as the unsigned integer type instead of the float
ype. The compression/decompression scheme consists of five steps:

� Load the 3D velocity model into a float array v�x,y,z� on the
host.

� Define a scale factor as r�65,535 / �vmax�vmin�, where the
constants vmin and vmax are the minimum and maximum values
of the 3D velocity model, respectively.

� Compress the float array into an unsigned integer array by first
subtracting the minimum velocity vmin of the whole model and
then rounding the float number to the nearest integer:

v3i�x,y,z�← Int	v�x,y,z��vmin
�r� .

� Upload the constants vmin, r, and the integer array v3i�x,y,z� to
the device.

� Extract the 2D velocity slice at depth z from v3i�x,y,z� before
performing wavefield extrapolation on the device and recover
as

v2f�x,y�←v3i�x,y,z�/r�vmin.

This compression to a 3D velocity model maps the velocity varia-
ions of 0��vmax�vmin� to the unsigned integer range of 0–65,535.
he error, caused by rounding the float to the integer in the third step,

s proportional to the range of velocity variations �vmax�vmin�. In
ractice, the absolute error caused by rounding is smaller than
.05 m /s for velocities ranging from 1500 to 4500 m /s, and the rel-
tive error is smaller than 0.0033%. Therefore, this compression of
he velocity model is feasible for most practical applications.

Another large-volume data set stored in the device memory is the
mage array. The amplitudes of 3D image data range from �1 to 1.
he short integer type �from �32,767 to 32,767� defined by CUDA

equires only two bytes for each element, rather than four bytes for
he float type. Thus we use the short integer array to store the image
ata in the device memory. First the image data in each depth slice
re scaled by 32,767. Then they are accumulated into the short inte-
er array of 3D image data when applying imaging conditions. Fi-
ally, the 3D image data are divided by 32,767 after transferring
ack to the host. The relative error caused by this procedure is small-
r than 0.0031%.

Figure 6 shows the GPU-based flowchart of depth migration by
eusing 3D data sets on GPUs with data compressions. By using
hese two compressions to the 3D velocity model and image data, we
ave half the memory demand for large-volume data stored in the
imited device memory; thus the capable model size is doubled.

ore importantly, they enable us to minimize the time consumption
aused by the low-bandwidth data transfer between the host and the
evice for the larger 3D velocity model.

D tapered function

An absorbing boundary condition is required to reduce numerical
rtifacts caused by the boundaries of a limited model. Masking with
tapered function to each side of the wavefield �Cerjan et al., 1985�

s popular and necessary to satisfy the periodicity requirement inher-
nt in the Fourier-based migration �Wild et al., 2000�. Commonly,
nly the samples of the attenuation function are stored in the memo-
y and are applied to each side of the individual row and column.As a
assband, the center area is excluded to reduce computational cost.
his procedure is cost-effective for the CPU-based implementation;
owever, it is costly for the GPU-based implementation for three
 SEG license or copyright; see Terms of Use at http://segdl.org/
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GPU-accelerated 3D Fourier migration WCA135
easons. First, this procedure consists of fewer parallelisms but more
erial operations. Second, it requires too many flow control instruc-
ions on judging array indices; the GPU-based code is less efficient
n flow control compared with the CPU-based code. Third, it leads to
random memory access pattern that is much slower than a coa-

esced memory access pattern.
To reduce the cost of applying absorbing boundary conditions on

PUs, we should adapt to the parallel-computation architecture on
he device and obey the special rules of the memory access patterns.

e use a 2D tapered function, shown in Figure 7, instead of the com-
only used 1D function. Samples in passband and attenuation band

re stored in a 2D array. This 2D tapered function is masked to the
avefield by pointwise multiplication when the absorbing boundary

ondition is applied. It allows fast parallel implementation on the
PU without any flow control or a random memory access pattern;

hus it is very efficient, although some fruitless computations are
erformed in the passband.

ompact architecture

Numerical experiments show that a compact kernel containing
ore instructions is significantly faster than a sequence of kernels,

lthough they fulfill the same function. Therefore, we should incor-
orate several scattered kernels into a compact kernel as much as
ossible. We incorporate the 2D tapered function and the scaling of
nverse Fourier transform into the time-shift kernel. In addition, we
ncorporate the phase shift into the wavenumber-associated high-or-
er correction kernel. Unfortunately, the cuFFT could not be called
n the kernel produced by the programmer. Consequently, we have to

igure 7. A 2D tapered function for the parallel implementation of
he absorbing boundary condition. This function is generated in the
hape of a Hanning window. A unitary 2D array is scaled by the 1D
apered function �shown in the upper part of Figure 7� first along the
nline direction and then along the crossline direction. The samples
n inline and crossline directions number 64 with the attenuation
and of 15 samples on each side. Masking with this 2D tapered func-
ion executes much faster than separately applying the row- and col-
mn-based 1D tapered function because the former actually is paral-
el when executing on the GPU, but the latter involves a costly ran-
om memory access pattern.
Downloaded 17 Dec 2009 to 159.226.119.194. Redistribution subject to
xclude each cuFFT from the phase-shift kernel and the time-shift
ernel, although this leads to redundant and less effective code.

Figure 8 shows the pseudocode that applies the data compres-
ions, the 2D tapered function, and the compact scheme. The
seudocode of copying each slice without the data compressions is
ot shown because it can be obtained easily from Figure 8. This
seudocode is consistent with the GPU-based flowchart shown in
igure 6. The outer loop is over the independent frequency compo-
ents. The inner loop performs depth extrapolation iteratively from
he surface to the bottom of the model. Twelve kernels are included
n the inner loop for the third-order optimum split-step Fourier prop-
gator. Five kernels associated with forward or inverse Fourier
ransforms are implemented by directly calling the CUDA library

igure 8. Pseudocode of the GPU-based third-order optimum split-
tep Fourier propagator �OSP�. The array on the host is named using
capital letter, and the array on the device is named using lowercase

etters. The sign “⇐” denotes data transfer between the host and the
evice, and the sign “←” denotes assigning the value on the right
ide to the variable on the left side. The part on the right side of the
ign “≪” denotes the kernel execution on the device, and the array
n the left side stores the results. The operator Int� · � rounds a float
umber to the nearest integer, and the operator N� · � denotes the nor-
alizing operator. The constants vmin and vmax are the minimum and
aximum values of the 3D velocity model, respectively. The refer-

nce velocity v0�z� is the minimum in the slice of 3D velocity at
epth z, which is used for the phase shift in a homogeneous back-
round.
 SEG license or copyright; see Terms of Use at http://segdl.org/
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WCA136 Zhang et al.
i.e., the cuFFT�, and other kernels are cascaded to perform point-
ise operations either in the frequency-space domain or in the fre-
uency-wavenumber domain.

NUMERICAL EXAMPLES

igration impulse responses

In this section, we illustrate the proposed GPU-based scheme on
hree aspects using impulse responses: first, the numerical precision;
econd, the performance of the third-order OSP in handling strong
elocity contrast; and third, the speedup over the CPU-based
cheme. A 3D homogeneous medium is defined on a grid system of
he dimensions 256�256�128 with grid spacing of 10 m. The real
elocity is v�3000 m /s with the reference velocity being v0

1500 m /s, i.e., velocity contrast �v-v0� /v�50%. All input trac-
s are zeros except that the central trace has a Ricker wavelet with the
ominant frequency of 25 Hz. The time delay of the wavelet is
75 ms with the sampling interval of 2 ms. Eighty frequency com-
onents are calculated. The 2D tapered function is used in the GPU-
ased code, and the 1D tapered function is used in the CPU-based
ode. The attenuation band has 15 samples on each side of the 2D
avefield.
Figure 9 shows the difference in the normalized images obtained

�

�

�

�

�

�

a)

b)
�

�

�

�

igure 9. The difference in normalized images obtained by the CPU
nd GPU implementations: �a� vertical slice along the crossline di-
ection at the inline position of 0 m; �b� depth slice at 640 m. The in-
ersection of the vertical and horizontal slices is shown by a dashed
ine in each slice. The CPU implementation uses the FFTW, the 1D
apered function but without data compression, and the GPU imple-

entation uses the cuFFT, the 2D tapered function, as well as the
ata compressions of the 3D velocity model and imaged data on the
evice.
Downloaded 17 Dec 2009 to 159.226.119.194. Redistribution subject to
y CPU and GPU implementations. In the vertical slice �a�, most
arts have small errors that are smaller than 0.5%, but apparent er-
ors arise in the upper side, and the maximum error even reaches 2%.
o wavenumber filter is used in our codes. If a wavenumber filter is

pplied, the apparent error at the upper side of vertical slice �a�
ould be reduced greatly. In the horizontal slice �b�, the maximum

rror is 0.4%. Apparent errors exist at the positions of boundary re-
ections in the crossline direction �see the two circular arcs� but not

he inline direction. This shows that the performance of the 2D ta-
ered function is slightly different from that of the 1D one.

In the CPU-based implementation, the 1D tapered function is ap-
lied after the wavefield extrapolation at depth z has finished. In the
PU-based implementation, however, the 2D tapered function

�x,y� shown in Figure 8 is applied when the wavefield extrapolation
s performing in parallel mode, and thus the boundary absorbing on
ome positions might have finished before the wavefield extrapola-
ion. Thus some differences exist between the 1D and 2D tapered
unctions in their actual performances. Fortunately, the differences
re negligible, as they are much smaller than 0.4%. In general, only
ome distortions exist at the background or at the boundary reflec-
ions, and the error generally is smaller than 0.4%. Therefore, the ac-
uracy is well kept after using our computing scheme compared with
he original CPU-based computation.

The Fourier finite-difference method �Ristow and Rühl, 1994;
iondi, 2002� is well known in imaging complex media with strong
elocity contrast. It is selected as a reference to evaluate the relative
erformance of the third-order OSP. The two-way splitting error
Brown, 1983� is removed using the wavenumber interpolation tech-
ique �Wang, 2001; Zhang et al., 2008�. Figure 10 contains the slices
btained from four methods: the Fourier finite-difference method,
he third-order OSP, the second-order generalized-screen method,
nd the fourth-order generalized-screen method. Both depth and
ertical slices show that the optimized parameters can significantly
mprove the accuracy of the generalized-screen propagator. The
hird-order OSP is even more accurate than the fourth-order general-
zed-screen propagator. The accurate angle of the third-order OSP is
s high as 50° when the velocity contrast is 50%, which is slightly
ower than that of the Fourier finite-difference propagator. These
nalyses are consistent with the previous relative error analyses
hown in Figure 1.

To check the speedup of the GPU-accelerated third-order OSP
ver the CPU-based one, we tested on three additional models with
he dimensions 128�128�64, 512�512�256, and 1024�1024

512, respectively. The speedup of the GPU implementation over
he equivalent CPU implementation is measured by the ratio of wall-
lock times without considering the disk I/O �see Tables 1 and 2 for
PU and GPU configurations�. Figure 11 shows the results. Obvi-
usly, the scheme that copies slices of the velocity model and imaged
ata to the device allows a much larger size of 3D model running on
he GPU. However, its speedup generally is lower than that of a
cheme that uploads the whole 3D velocity model to the device be-
ore migration and downloads the whole set of 3D imaged data back
o the host after migration. For example, the speedup of copying
ach slice is only 17 for the 256�256�128 model; in contrast, the
peedup of copying the whole is about 27 for the same model. For
nother example, the speedup of copying each slice is only 25 for the
12�512�256 model; in contrast, the speedup of copying the
hole is about 37 for the same model.
The speedup of migration impulse response is somewhat different

rom the speedup of the cuFFT over the FFTW shown in Figure 5.
 SEG license or copyright; see Terms of Use at http://segdl.org/
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GPU-accelerated 3D Fourier migration WCA137
or a small-size data set �e.g., 128�128 or 256�256�, the total
peedup of the algorithm is higher than the speedup of the cuFFT
ver the FFTW; whereas, for a large-size data set �e.g., 512�512 or
024�1024�, the total speedup of the algorithm is lower than the
peedup of the cuFFT over the FFTW. This shows that the Fourier
ransform is the most time-consuming part for the CPU-based algo-
ithm of Fourier depth migration but not for the GPU-based algo-
ithm, and other parts besides the Fourier transform would have
ore effect on the total speedup. The speedup of other parts lies be-

ween the speedup of the cuFFT over the FFTW for a small-size data
et and that for a large-size data set.

igration for the SEG/EAGE salt model
To verify accuracy and efficiency of the GPU-based third-order

SP on imaging 3D complex structures, we ran tests on zero-offset

a)

b)

� �

�

�

� �

igure 10. �a� Vertical slice, and �b� depth slice, from 3D migration
mpulse response. The dashed circle �or semicircle� denotes the ex-
ct position. The left part of Figure 10a shows the superposition of
he vertical slices obtained by the Fourier finite-difference method
ith alternating-direction-implicit �ADI� plus interpolation �indi-

ated by FFD� and the second-order generalized screen propagator
indicated by GSP2�. The right part of Figure 10a shows the superpo-
ition of the vertical slices obtained by the fourth-order generalized
creen propagator �indicated by GSP4� and the third-order optimum
plit-step Fourier propagator �indicated by OSP3�. The horizontal
lice consists of four equivalent parts: the upper left quadrant shows
he Fourier finite-difference method withADI plus interpolation �in-
icated by FFD�; the bottom left quadrant shows the second-order
eneralized screen propagator �indicated by GSP2�; the bottom right
uadrant shows the fourth-order generalized screen propagator �in-
icated by GSP4�; the upper right quadrant shows the third-order op-
imum split-step Fourier propagator �indicated by OSP3�.
Downloaded 17 Dec 2009 to 159.226.119.194. Redistribution subject to
ecords �Ober et al., 1997� of the SEG/EAGE salt velocity model
Aminzadeh et al., 1996�. The 3D grid system used here is of the di-
ensions 250�250�210 with a spacing of 40 m along the trans-

ersal direction and 20 m along the depth direction. Eighty frequen-
y components are calculated. The 2D tapered function is used for
he GPU-based code, and the 1D tapered function is used for the
PU-based code.
Figure 12 shows the vertical slice �at the inline position of

000 m� and horizontal slice �at the depth of 2010 m� of the 3D ve-
ocity model and corresponding slices of the image obtained by the
PU-based third-order OSP. Obviously, salt boundaries and the

tructures under the salt body are well imaged except that some arti-
acts still exist in the salt body. Of course, the sharp peaks on the salt
oundary are not well focused. This is because velocity contrasts and
he dip angle at those positions exceed the upper limit of the third-or-
er OSP’s capabilities �see the left part of the bold black line in Fig-
re 1�. This result is comparable to the result obtained by the Fourier
nite-difference method �Zhang et al., 2009�.
The code of the CPU-based third-order OSP runs 595.02 s,

hereas the GPU-accelerated code runs 18.52 s. The latter runs 32
imes faster than the former does. This speedup overall is consistent
ith the results shown in Figure 11.

DISCUSSION

We accelerate the wavefield extrapolation using GPUs by fully
aking advantage of the coalesced global memory access and the
UDA library of Fourier transforms. A very attractive point for our
omputing scheme is that it is easy to use and implement because
nly the global memory is used to pursue safely porting in an instant
anner. Of course, great potential still exists to improve the speedup

atio by correctly using shared memory and registers within a block.
owever, the effective use of shared memory typically requires a

omplete overhaul of the algorithm and its mapping to the GPUs.
his might be impractical for most geophysicists; thus we need a

rade-off between the speedup ratio and the feasibility for practical
pplications. We tend to achieve a relatively high speedup ratio over
he equivalent CPU-based algorithm, but without expending too

igure 11. Speedup of the GPU-based third-order OSP over the
PU-based one. Only the velocity models with dimensions 128
128�64, 256�256�128, and 512�512�256 are tested for the

cheme with data compressions �see circles on the upper line� be-
ause of the memory limitation. The triangles on the lower line de-
ote the scheme copying each slice separately.
 SEG license or copyright; see Terms of Use at http://segdl.org/
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WCA138 Zhang et al.
uch effort in porting the existing code to CUDA-enabled GPUs.
Although only the third-order OSP is illustrated, most elements of

he proposed scheme can be applied easily to other kinds of Fourier-
ased 3D migrations. It is easy to extend all techniques to prestack
igration because the prestack migration �e.g., shot-gather prestack
igration� contains two similar parts �only the sign and the input

ata are different between downward and upward extrapolations�. It
s easy also to extend our scheme to multi-GPU implementation to
btain a much higher speedup ratio.

CONCLUSIONS

Cost is historically a major factor that inhibits the routine use of
D wave-equation migration in practice. For example, the velocity
pdating requires several tens of iterations of 3D depth migration,
nd each iteration could run for several days even with high-perfor-
ance PC clusters. However, the geologic interpretations must wait

ntil the final migration results are obtained. Consequently, we must
rop some traces or shots occasionally to obtain the result in a rea-
onable time. This could lead to low resolution, although we have
ad enough field data to produce good results. Only with a magni-
ude of speedup is it practical to achieve much higher resolution by
aking more field data into account.

In this study, we present a computing scheme to speed up high-or-
er Fourier migration using a GPU-based library of the fast Fourier
ransform. We copy the whole 3D velocity model to the device mem-
ry before migration and copy the whole set of 3D imaged data back
o the host after migration. This scheme greatly reduces the time con-
umption caused by the low bandwidth of data transfer between the
ost and the device. We reduce half the memory demand by applying
ata compressions to the 3D velocity model and the 3D imaged data.
his scheme is feasible for most scales of current 3D explorations.
e also suggest a 2D tapered function for boundary conditions,
hich is suitable for parallel implementation on GPUs. We incorpo-

ate both boundary conditions using the 2D tapered function and the
caling of inverse Fourier transform into the time-shift kernel. This

) b)

) d)

igure 12. Migration test on the 3D SEG/EAGE salt model using the
PU-based third-order optimum split-step Fourier propagator

OSP�. �a� Vertical profile of model along the crossline direction at
he inline position of 5000 m, and �b� corresponding image. �c�
epth slice of model, and �d� corresponding image, at the depth of
010 m.
Downloaded 17 Dec 2009 to 159.226.119.194. Redistribution subject to
cheme reduces the time consumption caused by the random memo-
y access pattern involved and by scattered kernels.

The proposed GPU-accelerated scheme speeds up the third-order
SP over the CPU-based implementation by 25 to 40 times. A task

hat would have run for a whole month before now will run for only
bout a day, which means the overall computational cost has been re-
uced by more than 95%. The proposed scheme allows us to produce
satisfactory image in a much shorter turnaround time when updat-

ng the migration velocity. This scheme is consistent also with pre-
ailing systems of PC clusters. The combination of GPU-accelerat-
d Fourier propagators and PC clusters would, in terms of computa-
ional efficiency, make the wave-equation migration comparable to
irchhoff migration.
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